N9O-22314

AUTOMATED PROCEDURE EXECUTION
for
SPACE VEHICLE AUTONOMOUS CONTROL

by Thomas A. Broten and David A. Brown

TRW
One Space Park R2-2062
Redondo Beach, CA 90278

Abstract

Increased operational autonomy and reduced operating costs have become
critical design objectives in next-generation NASA and DoD space
programs. Our objective is to develop a semi-automated system for
intelligent spacecraft operations support. This paper presents the
Spacecraft Operations and Anomaly Resolution System (SOARS) as a
standardized, model-based architecture for performing High-Level
Tasking, Status Monitoring and automated Procedure Execution Control for
a variety of spacecraft. The particular focus here is on the Procedure
Execution Control module. A hierarchical procedure network is proposed
as the fundamental means for specifying and representing arbitrary
operational procedures. A separate procedure interpreter controls
automatic execution of the procedure, taking into account the current
status of the spacecraft as maintained in an object-oriented spacecraft
model.

1. Introduction the requirement stem from a) life-

cycle cost control through
A new generation of NASA and DoD reduction of ground support crew
space vehicles is emerging, for size (eg, for Space Station
which a high degree of operational platform and mission support
autonomy is a fundamental activities), b) improved spacecraft
requirement. The requirement is survivability through reduced
typically expressed as a need for dependence on vulnerable fixed-
on-board task management and base ground stations (eg, for early
contingency handling for extended warning and communications
periods of time, without direct satellites), and c¢) operations at
human involvement [Sobieski, extreme distances from the Earth
1989: GSFC, 1988]. The sources of where signal propagation time

239

PRECEDING PAGE BLANKX NOT FILMED

precludes tightly-coupled human
control (eg, for interplanetary
probes, rovers). The increased
levels of space vehicle autonomy
now being proposed will
substantially exceed the
capabilities of traditional
space/ground command link
operations. The next level of

autonomy will be termed the “task
level” here, to distinguish it from
the “command level” and to signify
independent execution and control

of a complete operational
procedure upon receipt of an
external tasking order or an

internal alarm message.

Raising space vehicle autonomy to
the task level involves advances in
a number of areas. First,
independent procedure execution
means more than simply executing
a prestored sequence of commands.
The structure of the procedure
must contain interim tests of the
current situation to assure that the

previous step was performed
correctly before the next step is
begun; otherwise, equipment

damage or unsafe conditions could
result. The procedure must also
incorporate basic contingency
handling routines, to avoid leaving
the space vehicle in an undesirable
state in the event of premature
procedure termination.

Second, there must be facilities
for on-board monitoring of the
current situation that are tied-in
to the space vehicle's baseline
telemetry and command system.

240

Automated real-time
interpretation of data is necessary
when direct human supervision is
absent or delayed. Recent
experiments with expert systems
for automatic detection/diagnosis
of anomalies, such as SCARES
[Hamilton, 1986], SHARP [Lawson,

1989], SFMS [Parks, 1990], and
StarPlan [Siemens, 1986] are
gradually expanding the capability
for real-time situation
assessment.

Third, true high-level tasking

implies the existence of a suitable
tasking language in which a task

(or operational goal) can be
precisely and unambiguously
expressed. Additional Al planning

facilities for breaking down the
high-level task into a coordinated
procedure containing primitive
spacecraft commands and
programmed status checks will be
required in the long-term. Space
vehicle autonomy can benefit
directly by borrowing some of the
new robot task planning languages
and architectures [Fu, 1987; Albus,
1987].

2. SOARS Architecture

The Spacecraft Operations and
Anomaly Resolution System
(SOARS) is a model-based
prototype for supporting
autonomous spacecraft operations.
As shown in Figure 1, SOARS

represents an add-on capability for
incorporation into any space

84N12831YddY SYYOS ‘| adnbl4

waisAg-ang
Adjswialal
pue
puewulod)

RIS

paseg-punoln lo pieog-up

_ Aljawal(al _

paseg punoip

&1

§
SspuBWWO)

TTeJ0aoedg

pleog-uQ

SpUBWWOD)

U011 9AL1]123.1107) 10
Buyjeg. shoulouoiny
¢= 101ABLAQ SNOJRUWIOUY O

JU3UISSasSe SnjkIg
¢= P3121PAJ| SAPIAI3SAO O

SU0IS129(] ‘031G <= SIS 0

T5[[0J7U0) SnhowiouoIny

[snieis vsel |

B3
$9)

.mca:
dOS/18poLl

Sd0S pue

s|apow ayepdn

<= sabueyd
ue|d Uolssii) o

Buydojruoul
sniels
Juapuadapul o

syse | Joyjuol
pue dojanaq o

sU0[18J9d0
punoJg

241

vehicle/ground station control loop
with standardized bus and
processor interfaces to command &
telemetry data. Under traditional
nonautonomous operations,
commands are transmitted from
the ground on the uplink, and routed
to the appropriate space vehicle
subsystems for execution. The
space vehicle subsystems
continuously report status, which
is encoded in telemetry for
transmission to the ground on the
downlink. Under upgraded
autonomous operations, additional
commands dealing with high-level
tasking and operational procedure
control can be sent to the space
vehicle. Correspondingly, task
status and autonomous processing
performance are reported back to
the ground. (Note that some
additional command and telemetry
slots must be allocated above the
space vehicle baseline to cover
autonomous operations.) For the
initial demonstration flights, all of
the SOARS functions would reside
on the ground to permit thorough
open-loop validation of the control
processes. Subsequently, many of
those functions would migrate to
the space vehicle for true
autonomous operations in the
closed-loop mode.

The target SOARS flight segment,
called the Autonomous Controller
Unit or ACU, is composed of three
basic elements, which are shown in
Figure 2. The Task Analyzer
receives high-level tasking
commands from the ground segment

242

(via the command subsystem), and
decomposes the task into a
coordinated program of primitive
commands and procedural
checkpoints. The Status Monitor
receives status data from the
space vehicle subsystems, and
detects the occurrence of specified
vehicle states indicating expected
(ie, planned) or unexpected (ie,
anomalous) conditions. The
Procedure Executor executes a
tasking program (received from the
Task Analyzer), or a corrective
action procedure (based on the
detection of an anomalous
condition by the Status Monitor)
under real-time control.

The remainder of this paper
focuses on the design and operation
of the Procedure Executor
component. Details of the
preliminary design of the other
components are contained in the
ACU specifications [Brown, 1989].
The Procedure Executor interfaces
with a simulated ground segment
workstation called the Ground
Tasking Interface, through which
the operator can directly program
and supervise autonomous
operations. prototype
implementation runs on a
Symbolics 3645 with the
human/computer interface and
spacecraft model (the DSP
satellite) implemented in the
Knowledge Engineering Environment
(KEE) from Intellicorp and the
Procedure Executor implemented in
Common Lisp.

The

juawbag 1ublid SHVOS

7 aJnbi4

-« J01NJ3X3
SpUBLIWO) 34NAJ3204dd
|0J43U0D
NS
Ff ARA
$34NPad0Jd papeotdn
94Npa204d
UclL1dv| suolll $9.4NPad0Jd Mse |
9A1193440))| —puor
91_AIDY (04| snies 2JNPa204d %S| 1ALV HIZATVYNY T|.I
-jU0d} uoiIN MGV 1 sSpugwiwo)
NS} -99%3 noY
aJnpod Sa|ny J031UoLY papeoldn
-204d
ﬁ SNIRIS SISA[RUY MSe |
Y ¥
> HOLINOW .
eled SNLV LS sniels NOY
SNjels
AS

(NDV) 2lun Jallodjuod snowouoiny

243

3. Procedure Development

Figure 3 shows a sample
operational procedure from the
Defense Support Program (DSP).
The procedure specifies how to
attempt recovery from the loss of
the second communications link.
(For the DSP satellite there are
three links total, each with a
different recovery procedure.
Manual procedures such as this are
normally developed during detailed
design and delivered as standard
operating procedures [Stager,
1987].)

The procedure is entered at the top
and execution follows a path
through the nodes until an exit
point is reached. The procedural
steps specify tests to Dbe
performed (diamonds), actions to
be taken (boxes), or exit points
(circles). The arrows specify
possible test results or simple
continuations following an action.
The tests and actions in some
cases are primitive (eg, ‘Is the L2
carrier present?’ or ‘Command lo
bit rate switch to mode 50’); and in
other cases complex (eg, ‘Verify
L3" -- which may involve running
the complete procedure for the
third link).

In the demonstration scenario a
corresponding procedure graph is
created on the ground using the
interactive facilities in the Ground
Tasking Interface (GTl). A portion
of the Link-2 procedure graphic is
shown in the large window of the

244

GT! display in Figure 4. Once
created by the operator, the
procedure graphic is automatically
processed and translated into an
efficient internal representation
suitable for automatic execution.

4. Procedure Representation

There are various possible ways to
internally represent a space
vehicle operational procedure for
computational purposes. One
straightforward representation is
as a directly executable computer

program. In this approach the
program will consist of a
conditional branch statement (if
<condition> then <step i> else

<step j>) or a case statement (case
<condition> A: <step i> B: <step j>
C. <step k>) for each procedural
step. In other words, choose the
next step depending on the outcome
of the conditional test, until an
exit point is reached.

This simple approach, however, has
significant drawbacks. First,
highly nested if ... then ... else or
case statements are messy and
notoriously difficult to understand
and debug. For the sample
procedure above, the longest path
would require nesting to 16 levels.
Second, there is no straightforward
way to handle repeated steps in the
procedure. Common subpaths must
be represented separately and
redundantly, unless goto
statements are included (thereby
overriding the natural program

CONSIDER L1
TLM DATA

L2 XMTR
FAILURE

v

LOST OF L2
CAPABWLITY

L2
CARRIER
PRESENT

NO

YES

L1 NO

CARRIER
PRESENT

YES (STILL ON

EAATH)

RECONF
XMTR

NO L2

CARRIER
PRESENT

YES

CMD LO 817
RATE SWITCH
TO MODQE SC

RECONF
TC HI
g'T RATE

NC

LOE 8
Sw FAILUR

YES

CMD LO BIT
RATE SWITCH
T0 MODE 50

CARRIER
PRESENT

TLM
RETURNED

| RECONF l

DO L0OSS OF
EARTH LOCK

NO

NO

L2
FAILURE

!
()

L2
FAILURE

!
()

MOD-
ULATION
PRESEN

GO ACTIVE

RECONF
TO H!
BIT RATE

RECONF
TO HI
B8iT RATE

!
()

ON L3
TURN ON PAN

PRN
PRESENT

RECONF
KG-46

NO

RECONF
TPU

NO

KG-46
OR TPU
FAILURE

YES

NO

RECONF
XMTR

PRN
PRESENT

CMD LO
BIT RATE
MODE 50

81T RATE

Figure 3. DSP Link-2 Diagnostic Procedure

245

VERIFY
L3

9JBJJa]uU| JojedadQ SHVYOS ‘v 9aJ4nbl4

. R T RSOSSN S TS)

Juesaid
MS/301
Je11ied

JIVASHUOM | | SOVASHHOM
ANAII0Ud yaauo
OV N3dO ASVL NIdO

(2-3ui1)
Juasalg

(Z-1wT)
FELEEERE
1013@ MO,

y3aayo 410y ¥d3ayo
DNIMSVL mﬁDD«m—Oquwﬂmm HOLINOW ONIASYL
TAONVO avordn LIWSNYYHL

¢Katjiqgeden

Aqpuerg Supiojuopy]

HOLINON
SNLVIS

NOILVHOLSIY T-INIT 4SA

UOG | tURH Duey puejrasued yuauderaaag

'ydes 3unpasosd e ping 01 ({43410} < UMD PPY) L3 AIND unoJg piaegq iraudysag waysAg
40 fsu0ndo 10j 33vdsHJOM NOY Ul UOIING ISNOuW HPPIW %N u®30.g wo| iaojeInseav) redjourag |

aoejIaju] dulxse], punois | amu SNONONOLANY

246

flow). Repetitive procedural
cycles are also a problem for the
same reason, with the added
drawback that the depth of
recursive calls is not predictable
before the procedure is run.

Another possible representation
for a procedure is as a collection
of rules. In this approach each
procedural step would be encoded
in a separate if ... then ... rule.
The rule-based representation
permits a high degree of
modularization of the procedural
contents that is easy to understand
and maintain. Which rule fires next
is decided by the current situation
at any time, thus no explicit
procedure actually exists.

The problem with this
representation is that the rules
would need to implicitly encode
control knowledge as well as
diagnostic knowledge in order to
maintain the required flow of the
procedure. Mixing the two kinds of
knowledge always diminishes the
clarity of a rule, and defeats the
original objective of rule-based
systems, which is to keep these
knowledge types separate. Also,
not having an explicit
representation of a procedure
makes it difficult to reason about
the procedure itself.

In keeping with the DSP example, a
procedure also can be formally
represented as a directed (possibly
cyclic) graph. This representation
appears to overcome most of the

247

problems with the other
representations while retaining
their advantages, at the expense of
some additional software for an
interpreter (see below).

The nodes in the graph correspond
to tests of various status
conditions derived from the
continuously updated space vehicle
database model, and the arcs
correspond to procedural control
decisions which are followed
depending on the outcome of
performing a node test. Space
vehicle control actions (ie,
commands) are handled as side
effects associated with some
nodes. The actual execution of a
procedure is characterized by a
sequence of procedural steps (ie, a
path) through the graph that
provides a diagnostic record of the
specific tests performed, decisions
made, and actions taken. The
individual nodes in a procedure
graph may themselves be
procedures. A hierarchical
procedural representation allows
complex procedures to be built up
from more primitive tests and
actions. For example, a Mars lander
suddenly switching to an alternate
landing site during the descent
phase may involve resetting a
number of different control
subsystems, all of which possess
their own reset procedures.

Moreover, the formal graph
representation permits a natural
separation of control knowledge
(ie, what to do next) from test and

actuation knowledge (ie, how to do
it). The control knowledge can be

stored in the procedure
representation where it belongs,
while the test and actuation

knowledge can be placed directly in
the space vehicle model which the
procedure is testing and actuating.

The above definition of a procedure
as a directed graph generally

allows for the representation of
arbitrarily complex procedures;
eg, it includes procedures with

provisions for contingency
handling, shared substeps,
repetitive cycles, interim status
reporting, and even delayed

operator enabling of critical steps,
if necessary. It also enables high-
level (Al search) analysis of the
declarative procedural form using
graph traversal techniques. High-
level procedural analysis methods
are required by the SOARS Task
Analyzer component, which s
responsible for selecting, adapting
and generating procedures to fulfill
ground tasking orders.

5. Execution Control

A procedure graph in SOARS is
implemented as a hash table. The
hash table allows direct access to
any node given that node’s
identifier name. The content of a
node, in turn, stores the name of a
primitive function which is to be
executed when that node s
activated (eg, a command or
conditional test), and which node

248

to branch to next given the real-
time result of the command or test.
A hash table is automatically
created for a procedure after the
operator develops the graphical
representation of the procedure
using KEE’s interactive interface
facilities

The execution of a procedure graph
(whether for verification purposes
on the ground or for operational
purposes on the spacecraft) is
controlled by an interpreter
module. The procedure interpreter
takes as input the hash table
representation of a procedure. It
begins execution at the designated
starting node and follows a path
through the procedure graph. To
execute a node, the interpreter
looks up the name of the primitive
function associated with the node
in a telemetry/command function
library. The library contains the
primitive functions for performing
all of the basic telemetry tests and
command sequences for the
spacecraft. The library, which will
be different for each spacecraft,
serves as the principal interface
between SOARS and the spacecraft
via the provided command &
telemetry subsystem. The library
functions are written in the Tell
and Ask (tm) pseudo-English
language provided with KEE to
simplify the interface with domain
experts. After executing the
appropriate function for the node
and receiving the returned results,
the interpreter steps to the next
node based on those results.

Procedure execution stops when a
termination node is reached.

Throughout the execution of a
procedure and at critical
designated checkpoints, the
Procedure Executor reports status
back to the Ground Tasking
Interface and to the on-board
Status Monitor. The operator and
Status Monitor together exercise
external (high-level) supervisory
control over the execution process.

6. Directions for Future Work
Our ultimate goal is to field an
integrated system for intelligent
spacecraft operations support,
including a standardized SOARS
shell and integrated Knowledge
Capture Tools (KCT). The KCT
developments of the prior year are
targeted to support spacecraft
design, integration & test, and
operations through the coordinated
collection and refinement of
analysis and simulation models.
The KCT comprises the off-line
knowledge-base design component,
while the SOARS shell represents
the on-line operational component
of the integrated system.

During the coming year we intend
to produce a working prototype of
KCT/SOARS and release it to one or
more project teams for use in
creating spacecraft models and
evaluating simulated autonomous
control. We plan to develop
demonstrations that will focus on

249

the Advanced Tracking and Data
Relay Satellite (ATDRS) and a Polar
Orbiting Platform (POP). The
procedural control and high-level
tasking elements of this year's
development will be combined with
the telemetry monitoring elements
of the Spacecraft Fault
Management System, or SFMS, (a
currently operational real-time
expert system) to complete the
prototype SOARS architecture. The
current SFMS, which is based on
symptomatic analysis of fault
conditions, is being upgraded to
handle model-based fault
diagnosis.

Once developed, KCT/SOARS will
provide spacecraft designers and
operators with an integrated
prototyping environment for
capturing and then using spacecraft
data and models. The initial
prototyping environment is
specifically aimed at a) generating
simple, well-structured models
which can be later expanded; D)
diagnosing a small number of
faults to a level where a certified
automatic procedure can reliably
rectify or evaluate the condition;
and c¢) providing a straightforward
capability for high-level tasking
(ie, simple on-board procedure
activation) from the ground. Fully
automated corrective action
procedures, in general, will not be

provided; instead, automated
control will be limited to the
execution of simple diagnostic

procedures capable of providing
backup information. We believe a

careful, gradual approach to approach, considering the potential
increased levels of satellite consequences of precipitous
autonomy is the only viable actions.

Cited Works

Albus, J.S., McCain, H.G., Lumia, R.L., NASA/NBS Standard Reference Model
for Telerobot Control System Architecture (NASREM), National Bureau of
Standards, 13 Mar 87.

Brown, D.A., Software Requirements Specification for a Space Vehicle
Autonomous Controller, TRW Memo, 23 May 89.

Brown, D.A., Autonomous Controller Block Diagrams, TRW Memo, 31 May 89.

Fu, K.S., Gonzalez, R.C., Lee, C.S.G., Robotics: Control, Sensing, Vision, and
Intelligence, McGraw-Hill, New York, 1987.

Goddard Space Flight Center (GSFC), Flight Telerobotics Servicer (FTS)
Requirements Document, 1988.

Hamilton, M., Dignam, F., Murrin, J., “SCARES: A Spacecraft Control
Anomaly Resolution Expert System”, Proceedings of Expert Systems in
Government Symposium, |IEEE, Oct 86.

Lawson, D.L., James, M.L., “SHARP: A Multi-mission Al System for
Spacecraft Telemetry Monitoring and Diagnosis”, Goddard Conference on
Space Applications of Artificial Intelligence, May 1989.

Parks, K.G., Broten, T.A., Rathe, R.A., "SFMS: An Expert System for
Spacecraft Operations”, Second Annual Conference on Innovative
Applications of Artificial Intelligence (IAAI-90), May 1990.

Siemens, R.W,, Golden, M., Ferguson, J.C., “StarPlan ll: Evolution of an
Expert System”, Proceedings Fifth National Conference on Artificial
Intelligence (AAAI-86), Aug 86.

Sobieski, S., Customer Data and Operations System (CDOS) Operations
Concept Document Version 1.0, Goddard Space Flight Center, Jun 1989.

Stager, D.C., Satellite Contingency Analyses and Schematics: Satellites
0014 - 0017, TRW Report # 45021-321-710A3-018, 2 Mar 87.

250

Special Topics

